Abstract

From aqueous precursor solutions of metal salts and sodium sulfide using MicroJet Reactor (MJR) technology Cd1-x Znx S and CdS/ZnS core/shell semiconductor nanoparticles were synthesized. The MJR approach represents an automated, continuous, flexible and scalable route for nanoparticle synthesis, providing a tight control over process parameters and thus simple size, shape and composition control. Since particle sizes below the excitonic Bohr radius were obtained by MJR, the nanoparticulate materials exhibit quantum confinement effects. By varying the precursor ratio the band gap of Cd1-x Znx S Quantum Dots (QDs) could be targeted from 3.1 to 3.6 eV. CdS/ZnS core/shell QDs were prepared by enclosing CdS particles from MJR with ZnS produced by thermal decomposition of a Zn-MPA complex. Adjustment of the shell thickness increased the photoluminescence intensity by 43 %. Synthesis of ternary sulfides in the form of core/shell particles broadens the spectrum of materials accessible by MJR and demonstrates the extraordinary flexibility of the technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.