Abstract

A novel strategy based on solar photo-Fenton mediated by ferric nitrilotriacetate (Fe3+-NTA) combined with NaOCl in continuous flow mode for wastewater reclamation has been studied. Escherichia coli (E. coli) inactivation attained ≥ 5 log10-units, meeting the most restrictive EU 2020/741 target (10 CFU/100 mL), and 75% of organic microcontaminant total load was removed. As a remarkable finding, trihalomethanes (THMs) concentration was insignificant, complying by far with the Italian legislation limit. To attain these results, first the effect of liquid depth on E. coli inactivation and imidacloprid (IMD) removal from spiked municipal effluents was evaluated in continuous flow pilot-scale raceway pond reactors at 60-min hydraulic residence time with low reagent concentrations (0.10 mM Fe3+-NTA, 0.73 mM H2O2 and 0.13 mM NaOCl). Disinfection was due to the bactericidal effect of chlorine. In contrast, liquid depth notably influenced microcontaminant removal, highlighting that operation at 10-cm liquid depth allows achieving treatment capacities higher than at 5 cm (16.50 vs 28.20 mg IMD/m2∙day). Next, the monitoring of THMs was carried out to evaluate the generation and degradation of disinfection by-products, along with the removal of actual microcontaminants. These promising results draw attention to the treatment potential and open the way for its commercial application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call