Abstract

A process comprising a continuous-flow hydrogenation reaction integrated with selective water-organic solvent biphasic extraction using CO2 as molecular switch to control partitioning was devised for the synthesis of arylpiperidines from arylpyridines. The selective hydrogenation of 4-phenylpyridine using heterogeneous carbon-supported metal catalysts was chosen as model reaction. A design-of-experiment approach was used for the identification of suitable reaction conditions under continuous-flow operation. A maximum selectivity for 4-phenylpiperidine of 96% was achieved at 87% conversion suppressing the deep hydrogenation to 4-cyclohexylpiperidine almost completely (≤5%). The higher basicity of piperidines over pyridines was exploited for selective and reversible protonation of the product upon pressurization with CO2 separating it quantitatively from the remaining starting material in a water-EtOAc biphasic system. This concept enabled a fully integrated and a salt-free synthetic process using a standard Pd/C catalyst for the hydrogenation coupled with the CO2-triggered isolation of the desired product 4-phenylpiperidine in 81% yield and 98% purity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.