Abstract

Ammonia is a critical component in fertilizers, pharmaceuticals, and fine chemicals and is an ideal, carbon-free fuel. Recently, lithium-mediated nitrogen reduction has proven to be a promising route for electrochemical ammonia synthesis at ambient conditions. In this work, we report a continuous-flow electrolyzer equipped with 25-square centimeter-effective area gas diffusion electrodes wherein nitrogen reduction is coupled with hydrogen oxidation. We show that the classical catalyst platinum is not stable for hydrogen oxidation in the organic electrolyte, but a platinum-gold alloy lowers the anode potential and avoids the decremental decomposition of the organic electrolyte. At optimal operating conditions, we achieve, at 1 bar, a faradaic efficiency for ammonia production of up to 61 ± 1% and an energy efficiency of 13 ± 1% at a current density of -6 milliamperes per square centimeter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call