Abstract

To mitigate the environmental impact of the improper disposal of spent LiFePO4 batteries and reduce resource waste, the development of LiFePO4 recycling technologies is of paramount importance. Meanwhile, olivine-structured NaFePO4 in sodium-ion batteries has received great attention, due to its high theoretical specific capacity of 154 mAh g-1 and excellent stability. However, olivine NaFePO4 only can be synthesized from olivine LiFePO4. Accordingly, in this proposal, developing the continuous flow electrochemical solid-liquid reactor-based metal ion insertion technology is to utilize the olivine FePO4, recycled from LiFePO4, and to synthesize NaFePO4. Additionally, by employing I- as the reducing agent, NaFePO4 is successfully synthesized with a discharge-specific capacity of 134 mAh g-1 at 0.1C and a remarkable capacity retention rate of 86.5% after 100 cycles at 0.2C. And the reasons for sodium deficiency in the synthesized NFP are elucidated through first-principles calculations. Furthermore, the kinetics of the solid-solution reaction 2 (Na2/3+βPO4→ Na1-αFePO4) mechanism improve with cycling and are sensitive to temperature. Utilizing a minimal amount of reducing agent in the electrochemical reactor, NaFePO4 synthesis is successfully achieved. This innovative approach offers a new, cost-effective, and environmentally friendly strategy for preparing NaFePO4 from recycling LiFePO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.