Abstract

A continuous adsorption study in a fixed-bed column was carried out using Multi-walled Carbon Nanotubes derived from Rosmarinus officinalis oil as an adsorbent for removing the textile dye Acid blue 40 from an aqueous solution. The adsorbent, MWNTs were prepared from Rosmarinus officinalis oil as a precursor to Fe/Mo catalyst supported on silica at 650 ºC under N2 atmosphere by spray pyrolysis process characterized by scanning electron microscopy, Transmission Electron microscopy, and Raman spectroscopy. The effects of adsorbent bed height (2–6 cm), initial ion concentration (20– 60 mg/L), and flow rate (10–30 mL/min) on the column performance were analyzed. The breakthrough curve was analyzed using the mathematical models of Thomas, Yoon-Nelson, and bed depth service time. The Thomas model at different conditions defined the behaviors of the breakthrough curves. The bed depth service time model showed good agreement with the experimental data. The high values of correlation coefficients (R2 0.9875) obtained indicate the validity of the bed depth service time model for the present column system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call