Abstract

In this article, we study a phase field model for a two-layer fluid where the temperature dependence of both the density (buoyancy forces) and the surface tension (Marangoni effects) is considered. The phase field model consisting of a modified Navier–Stokes equation, a Cahn–Hilliard phase field equation and an energy transport equation is derived through an energetic variational procedure. An appropriate variational form and a continuous finite element method are adopted to maintain the underlying energy law to its greatest extent. A few examples for Bénard–Marangoni convection in an Acetonitrile and n-Hexane two-layer fluid system heated from above will be computed to justify our phase field model and further show the good performance of our methods. In addition, an interesting experiment will be performed to show the competition between the Marangoni effects and the buoyancy forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.