Abstract

Continuous extrusion was studied of self-reinforced high density polyethylene (HDPE) sheets from flow-induced crystallization at die pressures varying from 30 to 60 MPa. Their morphology, thermal behavior, tensile strength, and light transmittance were tested. Flow fields of a polymer melt through a converging wedge channel were also investigated by direct visual observations in conjuction with a theoretical analysis. The extensional strain rate increased abruptly as the melt approached the exit of the converging channel, this resulting in a higher crystallization rate. So, achieving the crystallization of molecular chains just in front of the exit of the converging channel may favor to extrude the bulk polymeric materials having high properties under lower pressures (e.g., 40 MPa or lower), this having been realized in the present work. The tensile strength of the self-reinforced HDPE sheet prepared at a 40 MPa pressure was enhanced by a factor of 8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.