Abstract

Long‐term potentiation (LTP) impairment has been reported in many studies of autistic models. The aim of the present study was to investigate the effects of interval training (IT) and continuous training (CT) exercises on LTP in the hippocampal dentate gyrus (DG) neurons of valproic acid (VPA) rat model of autism. To induce an autism-like model, pregnant rats were injected 500 mg/kg NaVPA (intraperitoneal) on the embryonic day 12.5. IT and CT aerobic exercises started on postnatal day 56 in the offspring. Four weeks after IT and/or CT exercises, the offspring were urethane-anesthetized and placed into a stereotaxic apparatus for surgery, electrode implantation, and field potential recording. In the DG region, excitatory post synaptic potentials (EPSP) slope and population spike (PS) amplitude were measured. Sex differences in LTP were evident for control rats but not for VPA-exposed offspring. LTP was significantly smaller in VPA-exposed male offspring compared with control male rats. In contrast to males, there was no difference between VPA-exposed female offspring and control female rats. Interestingly, we observed a sex difference in the response to exercise between VPA-exposed male and female offspring. CT exercise training (but not IT) increased LTP in VPA-exposed male offspring. Both IT and CT exercise trainings had no effect on intact LTP in VPA-exposed female offspring. Our work suggests that there may be differences in the benefits of exercise interventions based on sex, and CT exercise training could be more beneficial for LTP improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.