Abstract

Detecting overlapping communities of an attribute network is a ubiquitous yet very difficult task, which can be modeled as a discrete optimization problem. Besides the topological structure of the network, node attributes and node overlapping aggravate the difficulty of community detection significantly. In this article, we propose a novel continuous encoding method to convert the discrete-natured detection problem to a continuous one by associating each edge and node attribute in the network with a continuous variable. Based on the encoding, we propose to solve the converted continuous problem by a multiobjective evolutionary algorithm (MOEA) based on decomposition. To find the overlapping nodes, a heuristic based on double-decoding is proposed, which is only with linear complexity. Furthermore, a postprocess community merging method in consideration of node attributes is developed to enhance the homogeneity of nodes in the detected communities. Various synthetic and real-world networks are used to verify the effectiveness of the proposed approach. The experimental results show that the proposed approach performs significantly better than a variety of evolutionary and nonevolutionary methods on most of the benchmark networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call