Abstract

• Highly productive continuous enantioselective crystallization. • Exploitation of two coupled fluidized bed crystallizers. • Provision of narrow product crystal size distributions. • Validation of a reduced population balance model. • First results regarding high resolution CFD-DEM simulations. This review summarizes results of an interdisciplinary project devoted to improve the access to enantiopure components by applying an advanced continuous separation process exploiting the principle of kinetically controlled preferential crystallization within two coupled fluidized beds located in conically shaped tubular crystallizers. The process efficiently combines selective crystallization with integrated product classification. Along with summarizing the related literature, new original results are presented with respect to theoretical process description and experimental validation. Although only one chiral system is considered specifically, namely the separation of the enantiomers of a racemic mixture of asparagine monohydrate using water as solvent, general conclusions will be drawn to highlight the large potential of the process principle. The conceptual approaches presented are seen as useful tools for the development of productive continuously operating enantioselective crystallization processes. They are applicable to separate enantiomers of numerous chiral molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.