Abstract

We report novel dynamical regimes of dissipative vortices supported by a radial-azimuthal potential (RAP) in the 2D complex Ginzburg-Landau (CGL) equation with the cubic-quintic nonlinearity. First, the stable solutions of vortices with intrinsic vorticity S = 1 and 2 are obtained in the CGL equation without potential. The RAP is a model of an active optical medium with respective expanding anti-waveguiding structures with m (integer) annularly periodic modulation. If the potential is strong enough, m jets fundamental of solitons are continuously emitted from the vortices. The influence of m, diffusivity term (viscosity) β, and cubic-gain coefficient ε on the dynamic region is studied. For a weak potential, the shape of vortices are stretched into the polygon, such as square for m = 4. But for a stronger potential, the vortices will be broke into m fundamental solitons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.