Abstract

Elliptic and hyperbolic Darcy-flux approximations are presented. Families of flux-continuous finite-volume methods are investigated for the elliptic full-tensor pressure equation with general discontinuous coefficients. Full pressure continuity across control-volume interfaces is built into the methods leading to an important distinction from the earlier pointwise continuous methods. The families of quasi-positive methods significantly reduce spurious oscillations (induced by earlier schemes) in discrete pressure solutions for strongly anisotropic full-tensor fields. Anisotropy favoring triangulation and non-linear flux splitting are also shown to be effective for computing solutions free of spurious oscillations. Multi-dimensional upwind schemes that reduce cross-wind numerical diffusion induced by the standard upwind scheme are also presented for hyperbolic Darcy-flux approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.