Abstract

A new class of superplastic titanium alloy, Ti–4.5Al–2.5Cr–1.2Fe–0.1C–0.3Cu–0.3Ni, was deformed at 1073 K with strain rates of 1×10−4–1×10−1 s−1, and microstructures in the condition between superplastic regions II and III (= 1×10−2 s−1) were observed using scanning electron microscope and electron back-scattered diffraction. Continuous dynamic recrystallization was observed, resulting in grain refinement both in α and β phases. The grain size decreased significantly in α phase at the early stage of the deformation and in β phase at the later stage. In the recrystallized microstructure, the major sub-boundaries formed perpendicularly to slip directions <11−20> in α phase and parallel to slip planes {110} in β phase, which might be caused by the difference in the symmetry of the crystal structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call