Abstract

An Al–Li–Mg–Sc alloy with an initial grain size of ∼60 μm was processed by equal-channel angular extrusion (ECAE) at 300 °C up to a total strain of 12. Transmission electron microscopy (TEM) and orientation imaging microscopy (OIM) were employed to establish the mechanism of grain refinement. It was found that new ultrafine grains evolved by a strain-induced continuous process, which is termed continuous dynamic recrystallization (CDRX). At ɛ ∼ 1, a well-defined subgrain structure had developed. Upon further straining the average mis-orientation of deformation-induced boundaries increased; low-angle boundaries (LAB) gradually converted into true high-angle boundaries (≥15°) (HAB). At ɛ ∼ 4, arrays of boundaries with low and high angle mis-orientations were observed. At ɛ ∼ 12, a structure dominated by HAB with an average grain size of ∼0.9 μm was formed. This size is roughly similar to that for subgrains developed at preceding strains. It was shown that CDRX occurs homogeneously; the formation of new grains takes place both along initial boundaries and within interiors of original grains as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.