Abstract

Continuous dynamic recrystallization (CDRX) forms a new recrystallized microstructure through the progressive increase in low-angle boundary misorientations (LAGBs) during the hot forming of metallic materials with high stacking fault energy (SFE), such as aluminum alloys. The present work investigates the effect of deformation parameters on the evolution of the dynamic recrystallization microstructures of an AA1050 aluminum alloy during compression at elevated temperatures. The alloy microstructure is investigated at deformation temperatures and strain rates in the range of 300 °C to 500 °C and 0.001 to 0.8 s−1. A well-defined substructure and subsequent DRX grains provide indication that recrystallization can proceed with continued strain under high-temperature compression. At a strain rate of 0.1 s−1, the DRX fraction is observed to be 0.25 at a temperature of 300 °C. This fraction increases to 0.32 as the temperature rises to 400 °C. The recrystallization mechanism is identified by analyzing the flow stress, the evolution of the subgrain misorientation angle, and the distribution of recrystallized grains. The observations of discontinuous dynamic recrystallization (DDRX) and CDRX under various deformation parameters are discussed. Moreover, the main substructure evolution laws observed from the high-temperature compression of an AA1050 Al alloy are summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.