Abstract

In quantum theory, observables with a continuous spectrum are known to be fundamentally different from those with a discrete and finite spectrum. While some fundamental tests and applications of quantum mechanics originally formulated for discrete variables have been translated to continuous ones, this is not the case in general. For instance, despite their importance, no experimental demonstration of nonlocality exists in the continuous variables regime. Attempts to bridge this gap and put continuous variables on a closer footing to discrete ones used dichotomization. However, this approach considers only discrete properties of the continuum, and its infinitesimal properties are not fully exploited. Here we show that it is possible to manipulate, detect and classify continuous variable states using observables with a continuous spectrum revealing properties and symmetries which are analogous to finite discrete systems. Our approach leads to an operational way to define and adapt, to arbitrary continuous quantum systems, quantum protocols and algorithms typical to discrete systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call