Abstract
AbstractWe consider the approximation of the depth‐averaged two‐dimensional shallow water equations by both a traditional continuous Galerkin (CG) finite element method as well as two discontinuous Galerkin (DG) approaches. The DG method is locally conservative, flux‐continuous on each element edge, and is suitable for both smooth and highly advective flows. A novel technique of coupling a DG method for continuity with a CG method for momentum is developed. This formulation is described in detail and validation via numerical testing is presented. Comparisons between a widely used CG approach, a conventional DG method, and the novel coupled discontinuous–continuous Galerkin method illustrates advantages and disadvantages in accuracy and efficiency. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.