Abstract

The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scaling than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call