Abstract

Results of an experimental study of continuous spin and pulsed detonation of hydrogen-oxygen and acetylene-oxygen mixtures in a flow-type annular combustor 10 cm in diameter with channel expansion in the regime of oxidizer ejection are presented. Through comparisons with the mechanical analogy of a piston-driven pump, it is found that the detonation wave serves as a pump for the oxidizer, and the rarefaction wave serves as a suction piston. Stable regimes of continuous spin detonation with one transverse wave are observed under the test conditions used; the wave velocity is D = 1.76–1.6 km/sec for hydrogen and D = 1.46–1.2 km/sec for acetylene. The frequency of the pulsed detonation wave is 7.3-5 kHz in the H2-O2 mixture and approximately 2.5 kHz in the C2H2-O2 mixture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.