Abstract

Entry of cell-penetrating peptides (CPPs) into living cells by translocating across plasma membranes is an important physiological phenomenon. To elucidate the mechanism of the translocation of CPPs across lipid bilayers, it is essential to reveal its elementary processes. For this purpose, here, we have developed a new method for the continuous, quantitative detection of the entry of CPPs into giant unilamellar vesicles (GUVs), where we investigate the interaction of fluorescent probe-labeled CPPs with single GUVs containing large unilamellar vesicles (LUVs) and fluorescent probes in their lumens using confocal microscopy. Using this method, we investigated the interaction of carboxyfluorescein (CF)-labeled transportan 10 (CF-TP10) with single GUVs comprised of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) containing LUVs of the same membrane and Alexa Fluor 647 hydrazide (AF647) in their lumens. At low concentrations of CF-TP10, first the fluorescence intensity (FI) of the GUV membrane increased with time, and then after some lag time the FI of the GUV lumen due to CF-TP10 increased continuously with time without leakage of AF647. At higher concentrations of CF-TP10, after the FI of the GUV lumen due to CF-TP10 increased significantly, leakage of AF647 started. These results indicate that CF-TP10 entered the GUV lumen by translocating across the GUV membrane and then bound to the LUVs there without pore formation and that CF-TP10 concentration in the lumen increased with time. The rate of entry of CF-TP10 into GUV lumen increased with CF-TP10 concentration. We discussed the kinetics of entry of CF-TP10 into single GUVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call