Abstract

Results are presented on analytic and computational analyses of the spin states associated with a 3D fcc lattice composed of ABC stacked kagome planes of magnetic ions with only long-range dipole-dipole interactions. Extending previous work on the 2D kagome system, where discrete six-fold discrete degeneracy of the ground state was revealed [Holden et al. Phys. Rev. B 91, 224425 (2015)], we show that the 3D lattice exhibits a continuous degeneracy characterized by just two spherical angles involving six sublattice spin vectors. Application of a Heat Bath Monte Carlo algorithm shows that thermal fluctuations reduce this degeneracy at very low temperature in an order-by-disorder process. A magnetic field applied along directions of high symmetry also results in lifting the continuous degeneracy to a subset of states from the original set of ground states. Metropolis Monte Carlo simulation results are also presented on the temperature and system size dependence of the energy, specific heat, and magnetization, providing evidence for a phase transition at T $\simeq$ 0.38 (in units of the dipole strength). The results can be relevant to a class of magnetic compounds having the AuCu$_3$ crystal structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call