Abstract

Given the cost of memories and the very large storage and bandwidth requirements of large-scale multimedia databases, hierarchical storage servers (which consist of disk-based secondary storage and tape-library-based tertiary storage) are becoming increasingly popular. Such server applications rely upon tape libraries to store all media, exploiting their excellent storage capacity and cost per MB characteristics. They also rely upon disk arrays, exploiting their high bandwidth, to satisfy a very large number of requests. Given typical access patterns and server configurations, the tape drives are fully utilized uploading data for requests that “fall through” to the tertiary level. Such upload operations consume significant secondary storage device and bus bandwidth. In addition, with present technology (and trends) the disk array can serve fewer requests to continuous objects than it can store, mainly due to IO and/or backplane bus bandwidth limitations. In this work we address comprehensively the performance of these hierarchical, continuous-media, storage servers by looking at all three main system resources: the tape drive bandwidth, the secondary-storage bandwidth, and the host's RAM. We provide techniques which, while fully utilizing the tape drive bandwidth (an expensive resource) they introduce bandwidth savings, which allow the secondary storage devices to serve more requests and do so without increasing demands for the host's RAM space. Specifically, we consider the issue of elevating continuous data from its permanent place in tertiary for display purposes. We develop algorithms for sharing the responsibility for the playback between the secondary and tertiary devices and for placing the blocks of continuous objects on tapes, and show how they achieve the above goals. We study these issues for different commercial tape library products with different bandwidth and tape capacity and in environments with and without the multiplexing of tape libraries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.