Abstract

A series of constant-mass, continuous cultivations of the penicillin producing mold Penicillium chrysogenum was carried out using a chemically defined medium with glucose as the growth-limiting component. The stoichiometry for growth of P. chrysogenum on glucose was characterized in terms of mass-yield and maintenance coefficients. Saturation kinetics with respect to glucose was used to describe the glucose consumption rate at steady-state conditions. Transient data indicate that the maximum rate of glucose consumption at a particular set of operating conditions is correlated to the metabolic ‘capacity’ of the mold as reflected by its intracellular RNA content. A progressive loss in the penicillin productivity in glucose limited chemostat cultures was correlated to the formation of two mutants. The two mutants were characterized by their sporulation when grown as surface cultures and by Southern dot-tests for δ-( l-α-aminoadipyl)- l-cysteinyl- d-valine synthetase (ACVS), isopenicillin-N synthase (IPNS) and acyl-CoA:6-APA acyltransferase (AT). The loss of penicillin productivity was caused by an increasing fraction of mutants which had lost the genes encoding for all three enzymes needed in the penicillin synthesizing pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call