Abstract

In a joint experimental and theoretical study on metallic TbSi2 nanowires, we observe a continuous crossover from a two-dimensional (2D) to a quasi-one-dimensional (1D) electronic structure by reduction of the nanowire width. The nanowires were grown by self-organization on vicinal Si(111) substrates denoted by the Miller indices (hhk). Their electronic structure was analyzed by angle-resolved photoemission spectroscopy (ARPES) and calculated using density functional theory (DFT). In ARPES, the TbSi2 nanowires show basically the 2D electronic structure of the TbSi2 film on planar Si(111) with an increasing momentum broadening for decreasing nanowire widths, consistent with Heisenberg's uncertainty principle. In contrast, DFT calculations predict a purely 1D electronic structure for TbSi2 nanowires. Unfolding this 1D electronic structure onto the Brillouin zone of the TbSi2 film leads to a Fermi surface appearing similar to the one of the 2D TbSi2 film, but with an additional 1D contribution from nanowire edges. Such an additional 1D signature is also observed in ARPES for narrow nanowires. These results indicate a continuous transition to a 1D electronic structure for decreasing nanowire widths. (Less)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call