Abstract
Continuous contractile activity of skeletal muscle elicits an early and dramatic increase in ribosomal RNA, suggesting that translational efficiency and/or capacity is enhanced during the adaptive response to increased metabolic demand. In view of the important role heat shock or stress proteins (HSPs) play as molecular chaperones during protein synthesis, we examined whether expression of the inducible 70-kDa HSP (HSP70) and/or mitochondrial 60-kDa HSP (HSP60) is altered in rabbit tibialis anterior muscle during continuous low-frequency motor nerve stimulation. Induction of the HSP70 gene was evident within 24 h after the onset of stimulation as reflected by increases in HSP70 transcription (> 20-fold) and mRNA (> 50-fold). HSP70 protein levels were significantly elevated (10- to 12-fold) after 14 and 21 days of stimulation. Mitochondrial HSP60 mRNA and protein also increased during stimulation (> 18- and > 5-fold after 21 days, respectively). In situ hybridization and immunohistochemistry coupled with myosin ATPase staining revealed that expression of HSP70 was restricted to oxidative type I and IIa fibers during the first 3 days of stimulation but shifted to primarily type II fibers after 21 days of stimulation. These findings demonstrate that induction of HSP70 during the adaptive response to chronic motor nerve stimulation proceeds from type I/IIa to type IId(x)/b fibers, suggesting that the expression of HSPs may be required to support the folding and compartmentalization of nascent proteins during the transformation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.