Abstract
Exposure to artificial coloured light is unavoidable in our modern life, but we are only just beginning to understand the impact of coloured light on human physiology. The aim of the present study was to determine effects of coloured light exposure on human systemic and brain physiology using systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). We measured changes in haemoglobin concentrations and tissue oxygen saturation in the left and right prefrontal cortices (L-PFC, R-PFC) by fNIRS, and also recorded skin conductance (SC), partial pressure of end-tidal CO2 (PETCO2), and heart-rate variability variables. 17 healthy adults (median age: 29 years, range: 25–65 years, 6 women) were exposed to blue, red, green, or yellow light for 10 minutes. Pre-light and post-light conditions were in darkness. In the L-PFC the yellow evoked a brain activation. SC and PETCO2 did not change during any of the coloured light exposures, but SC increased and PETCO2 decreased for all colours (except green) in the post-light period. Changes in L-PFC haemoglobin concentration were also observed during the post-light period but have to be interpreted with care, because heart rate and SC increased while PETCO2 decreased. The detected effects are potentially of high relevance for choosing room lighting and may possibly be applied therapeutically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Scientific reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.