Abstract

Previously, a corticosterone surge associated with a learning task was shown to facilitate cognitive processes through brain glucocorticoid receptors (GR) while chronic overexposure to this stress hormone impaired cognition. In the present study we tested the hypothesis that opposing effects on learning and memory might also occur after either phasic or continuous blockade of brain GR by intracerebroventricular (i.c.v.) administration of the GR antagonist RU38486 (aGR). We used a Morris water maze procedure to assess spatial learning and memory abilities in male Wistar rats. The effect of phasic brain GR blockade was studied following daily pretraining administration of 10 and 100 ng/microL aGR i.c.v. on 3 consecutive days. This repetitive aGR treatment impaired spatial learning and memory dose-dependently in comparison with vehicle controls. For continuous brain GR blockade, animals received an i.c.v., infusion of aGR (10 and 100 ng/0.5 microL per h or vehicle) over 10 days. Infusion of 100 ng aGR per hour resulted in a long-lasting facilitation of spatial performance. The 10 ng aGR infusion also caused initially a facilitating effect, which was, however, transient and performance became impaired during retest. Possible anxiolytic properties of the drugs were excluded in view of the animals' behaviour in the elevated plus maze. Both doses of aGR infusion reduced the number of mineralocorticoid receptors in the hippocampus, but only the high dose of aGR resulted in a significant reduction of available GR sites. In conclusion, continuous administration of GR antagonist improves cognitive function, while phasic blockade of brain GR function causes a cognitive deficit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call