Abstract

Sensory feedback from the moving limbs contributes to the regulation of animal and human locomotion. However, the question of the specific role of the various modalities is still open. Further, functional loss of leg afferent fibres due to peripheral neuropathy does not always lead to major alteration in the gait pattern. In order to gain further insight on proprioceptive control of human gait, we applied vibratory tendon stimulation, known to recruit spindle primary afferent fibres, to both triceps surae muscles during normal floor walk. This procedure would disturb organisation and execution of walking, especially if spindles fire continuously and subjects are blindfolded. Vibration induced significant, though minor, changes in duration and length of stance and swing phase, and on speed of walking and kinematics of lower limb segments. No effect was induced on angular displacement of the ankle joint or trunk and head kinematics. This paucity of effects was at variance with the perception of the subjects, who reported illusion of leg stiffness and gait imbalance. These findings would speak for a selective gating of Ia input during locomotion and emphasise the notion that the central nervous system can cope with an unusual continuous input along the Ia fibres from a key muscle like the soleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.