Abstract

The security of private information is becoming the bedrock of an increasingly digitized society. While the users are flooded with passwords and PINs, these goldstandard explicit authentications are becoming less popular and valuable. Recent biometric-based authentication methods, such as facial or finger recognition, are getting popular due to their higher accuracy. However, these hard-biometric-based systems require dedicated devices with powerful sensors and authentication models, which are often limited to most of the market wearables. Still, market wearables are collecting various private information of a user and are becoming an integral part of life: accessing cars, bank accounts, etc. Therefore, time demands a burden-free implicit authentication mechanism for wearables using the less-informative soft-biometric data that are easily obtainable from modern market wearables. In this work, we present a context-dependent soft-biometric-based authentication system for wearables devices using heart rate, gait, and breathing audio signals. From our detailed analysis using the “leave-one-out” validation, we find that a lighter kNearest Neighbor (k-NN) model with k = 2 can obtain an average accuracy of 0.93 ± 0.06, F1 score 0.93 ± 0.03, and false positive rate (FPR) below 0.08 at 50% level of confidence, which shows the promise of this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.