Abstract

Mammals and birds maintain high arterial partial pressure of oxygen (PO2 ) values in order to preserve near-complete hemoglobin (Hb) oxygen (O2) saturation. In diving mammals and birds, arterial O2 follows a primarily monotonic decline and then recovers quickly after dives. In laboratory studies of submerged freshwater turtles, arterial O2 depletion typically follows a similar pattern. However, in these studies, turtles were disturbed, frequently tethered to external equipment and confined either to small tanks or breathing holes. Aquatic turtles can alter cardiac shunting patterns, which will affect arterial PO2 values. Consequently, little is known about arterial O2 regulation and use in undisturbed turtles. We conducted the first study to continuously measure arterial PO2 using implanted microelectrodes and a backpack logger in undisturbed red-eared sliders during routine activities. Arterial PO2 profiles during submergences varied dramatically, with no consistent patterns. Arterial PO2 was also lower than previously reported during all activities, with values rarely above 50 mmHg (85% Hb saturation). There was no difference in mean PO2 between five different activities: submerged resting, swimming, basking, resting at the surface and when a person was present. These results suggest significant cardiac shunting occurs during routine activities as well as submergences. However, the lack of relationship between PO2 and any activity suggests that cardiac shunts are not regulated to maintain high arterial PO2 values. These data support the idea that cardiac shunting is the passive by-product of regulation of vascular resistances by the autonomic nervous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call