Abstract

As is known, at the Gibbs-Boltzmann equilibrium, the mean-field q-state Potts model with a ferromagnetic coupling has only a first-order phase transition when q ⩾ 3, while there is no phase transition for an antiferromagnetic coupling. The same equilibrium is asymptotically reached when one considers the continuous time evolution according to a Glauber dynamics. In this paper we show that, when we consider instead the Potts model evolving according to a discrete-time dynamics, the Gibbs-Boltzmann equilibrium is reached only when the coupling is ferromagnetic while, when the coupling is anti-ferromagnetic, a period-2 orbit equilibrium is reached and a stable second-order phase transition in the Ising mean-field universality class sets in for each component of the orbit. We discuss the implications of this scenario in real-world problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.