Abstract

An optical fiber vibration sensor based on a polarization diversity scheme has been developed to study structural vibration properties under external disturbance. The polarization diversity scheme has improved signal-to-noise ratio (SNR) by over 13 dB with capability of detection frequency of sub-hertz to tens of kilo- hertz. The minimum dynamic strain we have detected is 3 nepsiv, and the SNR of the sensor is >37 dB without any averaging. For the first time, Rayleigh backscattering has been utilized to detect continuous and damped vibration generated by a piezo fiber stretcher and vibrating cantilever with a frequency range of sub-hertz to 16 kHz. We also use this sensor and polarization analyzer to characterize the polarization state change and phase shift of the piezo fiber stretcher in transmission and Rayleigh backscattering up to kilohertz frequency, both results agrees quantitatively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call