Abstract

Continuous alumina fiber-reinforced yttria-stabilized zirconia (YSZ) composites with a LaPO4 fiber coating were fabricated by slurry infiltration and spark plasma sintering (SPS). The LaPO4 coating was deposited on the reinforcement alumina fabrics by a modified sol-gel method. The YSZ slurry with good dispersion and stability was prepared by optimizing the pH value, dispersant addition and ball milling time. The fabricated composite with a high density of ∼ 92 % has a good flexural strength of 277 ± 43 MPa, and a superior fracture toughness of 15.93 ± 0.75 MPa·m1/2 exhibiting a non-brittle failure behavior. It was found that the LaPO4 coating reduced the residual stress near the fiber/matrix interface to 131 ± 41 MPa, which was 369 ± 63 MPa in the composite without the fiber coating. The LaPO4 coating renders a weak interphase to improve the composite toughness by activating several toughening mechanisms including crack deflection, fiber debonding and pullout, and delamination behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call