Abstract

This paper introduces a contest model in which each player decides when to stop a privately observed Brownian motion with drift and incurs costs depending on his stopping time. The player who stops his process at the highest value wins a prize. Applications of the model include procurement contests and competitions for grants. We prove existence and uniqueness of the Nash equilibrium outcome, even if players have to choose bounded stopping times. We derive the equilibrium distribution in closed form. If the noise vanishes, the equilibrium outcome converges to - and thus selects - the symmetric equilibrium outcome of an all-pay auction. For two players and constant costs, each player’s profits increase if costs for both players increase, variance increases, or drift decreases. Intuitively, patience becomes a more important factor for contest success, which reduces informational rents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.