Abstract

Five-axis CNC flank machining has been commonly used in the industry for shaping complex geometries. Geometrical errors typically occur in five-axis flank finishing of non-developable surfaces using a cylindrical cutter. Most existing tool path planning methods adjust discrete cutter locations to reduce these errors. An excessive change in the cutter center or axis between consecutive cutter locations may deteriorate the machined surface quality. This study developed a tool path generation method for minimizing geometrical errors on finished surfaces while preserving high-order continuity in the cutter motion. A tool path is described using the moving trajectory of the cutter center and changes in two rotational angles in compact curve representations. An optimization scheme is proposed to search for optimal curve control points and the resulting tool path. A curve subdivision mechanism progressively increases the control points during the search process. Simulation results confirm that the proposed method not only enhances the computational efficiency of tool path generation but also improves the machined surface finish. This study provides a computational approach for precision tool path planning in five-axis CNC flank finishing of ruled surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.