Abstract

The explosive percolation problem on the complete graph is investigated via extensive numerical simulations. We obtain the cluster-size distribution at the moment when the cluster size heterogeneity becomes maximum. The distribution is found to be well described by the power-law form with the decay exponent τ=2.06(2), followed by a hump. We then use the finite-size scaling method to make all the distributions at various system sizes up to N=2(37) collapse perfectly onto a scaling curve characterized solely by the single exponent τ. We also observe that the instant of that collapse converges to a well-defined percolation threshold from below as N→∞. Based on these observations, we show that the explosive percolation transition in the model should be continuous, contrary to the widely spread belief of its discontinuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.