Abstract

AbstractThe question of lateral and/or vertical continuity of subducted slabs in active orogens is a hot topic partly due to poorly resolved tomographic data. The complex slab structure beneath the Alpine region is only partly resolved by available geophysical data, leaving many geological and geodynamical issues widely open. Based upon a finite‐frequency kernel method, we present a new high‐resolution tomography model using P wave data from 527 broadband seismic stations, both from permanent networks and temporary experiments. This model provides an improved image of the slab structure in the Alpine region and fundamental pinpoints for the analysis of Cenozoic magmatism, (U)HP metamorphism, and Alpine topography. Our results document the lateral continuity of the European slab from the Western Alps to the central Alps, and the downdip slab continuity beneath the central Alps, ruling out the hypothesis of slab break off to explain Cenozoic Alpine magmatism. A low‐velocity anomaly is observed in the upper mantle beneath the core of the Western Alps, pointing to dynamic topography effects. A NE dipping Adriatic slab, consistent with Dinaric subduction, is possibly observed beneath the Eastern Alps, whereas the laterally continuous Adriatic slab of the Northern Apennines shows major gaps at the boundary with the Southern Apennines and becomes near vertical in the Alps‐Apennines transition zone. Tear faults accommodating opposite‐dipping subductions during Alpine convergence may represent reactivated lithospheric faults inherited from Tethyan extension. Our results suggest that the interpretations of previous tomography results that include successive slab break offs along the Alpine‐Zagros‐Himalaya orogenic belt might be proficiently reconsidered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call