Abstract
Background Assessing aortic valve stenosis (AVS) by cardiac magnetic resonance (CMR) remains challenging, largely due to effects of accelerated flow and resulting pressure recovery, or the phenomena of kinetic energy transmuting to static fluid pressure distally. Effective orifice area (EOA) is a technique used in echocardiography and has been shown to improve AVS assessment. The potential of phasecontrast velocity mapping (PC-MRI) to improve the accuracy of EOA rests on the ability to resolve high peak velocities; previous studies have shown systematic underestimation compared to echocardiography. We used in vitro experiments to assess the accuracy of EOA using the continuity equation with PC-MRI derived peak velocities and flows.
Highlights
Assessing aortic valve stenosis (AVS) by cardiac magnetic resonance (CMR) remains challenging, largely due to effects of accelerated flow and resulting pressure recovery, or the phenomena of kinetic energy transmuting to static fluid pressure distally
The potential of phasecontrast velocity mapping (PC-MRI) to improve the accuracy of Effective orifice area (EOA) rests on the ability to resolve high peak velocities; previous studies have shown systematic underestimation compared to echocardiography
We used in vitro experiments to assess the accuracy of EOA using the continuity equation with PC-MRI derived peak velocities and flows
Summary
Assessing aortic valve stenosis (AVS) by cardiac magnetic resonance (CMR) remains challenging, largely due to effects of accelerated flow and resulting pressure recovery, or the phenomena of kinetic energy transmuting to static fluid pressure distally. Effective orifice area (EOA) is a technique used in echocardiography and has been shown to improve AVS assessment. The potential of phasecontrast velocity mapping (PC-MRI) to improve the accuracy of EOA rests on the ability to resolve high peak velocities; previous studies have shown systematic underestimation compared to echocardiography. We used in vitro experiments to assess the accuracy of EOA using the continuity equation with PC-MRI derived peak velocities and flows
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.