Abstract
A continuous multi-utility fully represents a not necessarily total preorder on a topological space by means of a family of continuous increasing functions. While it is very attractive for obvious reasons, and therefore it has been applied in different contexts, such as expected utility for example, it is nevertheless very restrictive. In this paper we first present some general characterizations of the existence of a continuous order-preserving function, and respectively a continuous multi-utility representation, for a preorder on a topological space. We then illustrate the restrictiveness associated to the existence of a continuous multi-utility representation, by referring both to appropriate continuity conditions which must be satisfied by a preorder admitting this kind of representation, and to the Hausdorff property of the quotient order topology corresponding to the equivalence relation induced by the preorder. We prove a very restrictive result, which may concisely described as follows: the continuous multi-utility representability of all closed (or equivalently weakly continuous) preorders on a topological space is equivalent to the requirement according to which the quotient topology with respect to the equivalence corresponding to the coincidence of all continuous functions is discrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.