Abstract

Yager's $q$ -rung orthopair fuzzy set ( $q$ -ROFS) is a powerful tool to handle uncertainty and vagueness in real life. It expands the spatial scope of membership and nonmembership, and therefore has a wider range of constraints and stronger modeling capabilities. However, to date, there is no investigation for $q$ -rung orthopair fuzzy derivatives and differentials, which are very important for further developing $q$ -rung orthopair fuzzy calculus ( $q$ -ROFC). The basic elements of a $q$ -ROFS are $q$ -rung orthopair fuzzy numbers ( $q$ -ROFNs), based on which we propose the $q$ -rung orthopair fuzzy functions ( $q$ -ROFFs) and discuss their continuities in detail. Subsequently, we study the derivative of the $q$ -ROFF, which reveals an accurate description on rate of change for continuous $q$ -ROFF. Next, the differential operation of $q$ -ROFF is established; thereby providing an effective approximation on nonlinear problem in the $q$ -ROFF environment. Finally, we present numerical examples as explicit applications of $q$ -ROFC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.