Abstract
Urbanization affects vegetation within city administrative boundary and nearby rural areas. Gross primary production (GPP) of vegetation in global urban areas is one of important metrics for assessing the impacts of urbanization on terrestrial ecosystems. To date, very limited data and information on the spatial-temporal dynamics of GPP in the global urban areas are available. In this study, we reported the spatial distribution and temporal dynamics of annual GPP during 2000–2016 from 8,182 gridcells (0.5° by 0.5° latitude and longitude) that have various proportion of urban areas. Approximately 79.3% of these urban gridcells had increasing trends of annual GPP during 2000-2016. As urban area proportion (%) within individual urban gridcells increased, the means of annual GPP trends also increased. Our results suggested that for those urban gridcells, the negative effect of urban expansion (often measured by impervious surfaces) on GPP was to large degree compensated by increased vegetation within the gridcells, mostly driven by urban management and local climate and environment. Our findings on the continued increases of annual GPP in most of urban gridcells shed new insight on the importance of urban areas on terrestrial carbon cycle and the potential of urban management and local climate and environment on improving vegetation in urban areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.