Abstract

We discuss first the block structure of the Newton-Pade table (or, rational interpolation table) corresponding to the double sequence of rational interpolants for the data{(z k, h(zk)} k ∞ =0. (The (m, n)-entry of this table is the rational function of type (m,n) solving the linearized rational interpolation problem on the firstm+n+1 data.) We then construct continued fractions that are associated with either a diagonal or two adjacent diagonals of this Newton-Pade table in such a way that the convergents of the continued fractions are equal to the distinct entries on this diagonal or this pair of diagonals, respectively. The resulting continued fractions are generalizations of Thiele fractions and of Magnus'sP-fractions. A discussion of an some new results on related algorithms of Werner and Graves-Morris and Hopkins are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.