Abstract
This paper attempts to present an expository review of continued fraction expansion (CFE) based discretization schemes for fractional order differentiators defined in continuous time domain. The schemes reviewed are limited to infinite impulse response (IIR) type generating functions of first and second orders, although high-order IIR type generating functions are possible. For the first-order IIR case, the widely used Tustin operator and Al-Alaoui operator are considered. For the second order IIR case, the generating function is obtained by the stable inversion of the weighted sum of Simpson integration formula and the trapezoidal integration formula, which includes many previous discretization schemes as special cases. Numerical examples and sample codes are included for illustrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.