Abstract
Absorbing boundary conditions are generally required for numerical modeling of wave phenomena in unbounded domains. Local absorbing boundary conditions are generally preferred for transient analysis because of their computational efficiency. However, their accuracy is severely limited because the more accurate high-order boundary conditions cannot be implemented easily. In this paper, a new arbitrarily high-order absorbing boundary condition based on continued fraction approximation is presented. Unlike the existing boundary conditions, this one does not contain high-order derivatives, thus making it amenable to implementation in conventional C0 finite element and finite difference methods. The superior numerical properties and implementation aspects of this boundary condition are discussed. Numerical examples are presented to illustrate the performance of these new high-order boundary condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.