Abstract
Numerical continuation in the context of optimization can be used to mitigate convergence issues due to a poor initial guess. In this work, we extend this idea to Riemannian optimization problems, that is, the minimization of a target function on a Riemannian manifold. For this purpose, a suitable homotopy is constructed between the original problem and a problem that admits an easy solution. We develop and analyze a path-following numerical continuation algorithm on manifolds for solving the resulting parameter-dependent equation. To illustrate our developments, we consider two typical classical applications of Riemannian optimization: the computation of the Karcher mean and low-rank matrix completion. We demonstrate that numerical continuation can yield improvements for challenging instances of both problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.