Abstract

By a classical theorem transversal homoclinic points of maps lead to shift dynamics on a maximal invariant set, also referred to as a homoclinic tangle. In this paper we study the fate of homoclinic tangles in parameterized systems from the viewpoint of numerical continuation and bifurcation theory. The new bifurcation result shows that the maximal invariant set near a homoclinic tangency, where two homoclinic tangles collide, can be characterized by a system of bifurcation equations that is indexed by a symbolic sequence. These bifurcation equations consist of a finite or infinite set of hilltop normal forms known from singularity theory. For the Henon family we determine numerically the connected components of branches with multi-humped homoclinic orbits that pass through several tangencies. The homoclinic network found by numerical continuation is explained by combining our bifurcation result with graph-theoretical arguments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.