Abstract
Recurrent neural networks (RNNs) have been proved very successful at modeling sequential data such as language or motions. However, these successes rely on the use of the backpropagation through time (BPTT) algorithm, batch training, and the hypothesis that all the training data are available at the same time. In contrast, the field of developmental robotics aims at uncovering lifelong learning mechanisms that could allow embodied machines to learn and stabilize knowledge in continuously evolving environments. In this article, we investigate different RNN designs and learning methods, that we evaluate in a continual learning setting. The generative modeling task consists in learning to generate 20 continuous trajectories that are presented sequentially to the learning algorithms. Each method is evaluated according to the average prediction error over the 20 trajectories obtained after complete training. This study focuses on learning algorithms with low memory requirements, that do not need to store past information to update their parameters. Our experiments identify two approaches especially fit for this task: conceptors and predictive coding. We suggest combining these two mechanisms into a new proposed model that we label PC-Conceptors that outperforms the other methods presented in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.