Abstract

We study the inverse problem of parameter identification in noncoercive variational problems that commonly appear in applied models. We examine the differentiability of the set-valued parameter-to-solution map using the first-order and the second-order contingent derivatives. We explore the inverse problem using the output least-squares and the modified output least-squares objectives. By regularizing the noncoercive variational problem, we obtain a single-valued regularized parameter-to-solution map and investigate its smoothness and boundedness. We also consider optimization problems using the output least-squares and the modified output least-squares objectives for the regularized variational problem. We give a complete convergence analysis showing that for the output least-squares and the modified output least-squares, the regularized minimization problems approximate the original optimization problems suitably. We also provide the first-order and the second-order adjoint method for the computation of the first-order and the second-order derivatives of the output least-squares objective. We provide discrete formulas for the gradient and the Hessian calculation and present numerical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call