Abstract

A worldwide investigation of continental erosion is carried out by the study of large drainage basins, on the basis of hydrological data, environmental factors, and basin relief distribution. Inside each basin, mean geochemical and mechanical denudation rates are defined. A multicorrelation analysis shows that the mechanical denudation rates Ds are uncorrelated with environmental factors and correlated with mean basin elevation H, while chemical denudation rates Dd are insensitive to relief but correlated with mean annual precipitation. Furthermore, two linear relationships between H and Ds are detected: (1) Ds (m/10³ yr) = 419×10−6 H (m) ‐ 0.245, with V (explained variance) = 95.1%; this law concerns basins related to orogenies younger than 250 Ma. The negative intercept is interpreted as a continental sedimentation rate of 245 m/m.y. An alternative model in which one invokes a critical elevation, separating erosion from sedimentation, is equally successful and leads to lower sedimentation rates (60–110 m/m.y.). For both models, one derives from the slope of the adjustments, erosion time constants on the order of 2.5 m.y. (2) Ds (m/10³ yr) = 61×10−6 H (m), with V = 86.5%; this law concerns basins related to older orogenies. The null intercept suggests the lack of continental storage. Because of the more important dispersion of the data, the erosion time constant is calculated separately for each basin; it ranges from 15 to 360 m.y. The tectonic implications of these results are discussed. In particular, the short time constant 2.5 m.y. agrees with orogenic uplift rates on the order of 1 mm/yr, observed in active mountain chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.